
Evaluating the Impact of Network
Depth and Bottleneck Capacity on

MNIST Denoising

Alexander Eriksson Byström Jack Andersson Stridh

Abstract

This project investigates how changing the structure of a Denoising
Autoencoder (DAE) affects its ability to clean up noisy images from
the MNIST dataset. We tested nine different models by varying the
network depth (from 1 to 3 layers) and the bottleneck size. To pick
bottleneck sizes, we use Principal Component Analysis (PCA) to find
the dimensions needed to keep 70%, 80% and 90% of the data’s original
variance. All models were trained to reconstruct clean digits after
being fed versions corrupted by 50% Gaussian noise.

Our results show that bigger and deeper isn’t always better for
accuracy. The simplest model (one layer) with the largest bottleneck
had the lowest mean squared error (MSE) as it produced a slightly
blurred version of the digit that mathematically stays closer to the
“average” clean image. On the other hand, the deeper three-layer
models created much sharper images that look better to the human
eye, but have higher error scores.

This reveals a perception-distortion trade-off: models that look
“cleaner” to us often have higher numerical errors because they hal-
lucinate sharp edges that aren’t perfectly aligned with the original
image.

1 Introduction

Autoencoders trained to reconstruct clean inputs from corrupted observa-
tions have become a standard approach for learning robust data represen-
tations in an unsupervised manner. By deliberately injecting noise during
training, denoising autoencoders (DAEs) are prevented from learning trivial
identity mappings and instead must capture the underlying structure of the
data manifold. This framework has proven effective across various domains,
from image processing to signal restoration, yet the relationship between
network architecture and reconstruction quality remains incompletely un-
derstood.

Two fundamental architectural parameters govern the capacity and behavior
of denoising autoencoders: the depth of the network (the number of succes-
sive nonlinear transformations) and the dimensionality of the bottleneck layer
(the degree of information compression imposed). While increasing network
depth allows for more complex functional mappings, it also introduces addi-
tional parameters and potential instabilities during optimization. Similarly,
expanding the bottleneck preserves more information from the input but may
reduce the regularizing effect of compression that enables generalization.

Prior work has established the theoretical foundations of denoising autoen-
coders, demonstrating that under certain conditions they learn to approx-
imate the score function of the data distribution. However, empirical in-
vestigations into how architectural choices affect this approximation quality,
particularly in the presence of varying noise levels, have been limited. Most
existing studies focus on demonstrating that DAEs can denoise effectively,
rather than systematically exploring the tradeoffs inherent in different archi-
tectural configurations.

This paper presents a controlled empirical study of how network depth and
bottleneck dimensionality jointly influence denoising performance on the
MNIST handwritten digit dataset. We construct a systematic grid of nine
architectures, varying depth from one to three hidden layers while select-
ing bottleneck dimensions through Principal Component Analysis to capture
70%, 80%, and 90% of the variance in the training data. All models are
trained on images corrupted with additive Gaussian noise and evaluated on
their ability to reconstruct clean digits from similarly corrupted test images.

Our results reveal a non-monotonic relationship between architectural com-

1

plexity and reconstruction error. The simplest architecture with the largest
bottleneck achieves the lowest Mean Squared Error, producing conservative,
smoothed reconstructions. In contrast, deeper networks generate sharper
outputs with more pronounced edges and finer detail, yet incur higher numer-
ical reconstruction error. Analysis of pixel-wise residuals indicates that this
discrepancy arises from a fundamental tension between optimizing for point-
wise accuracy and recovering perceptually salient image structure. These
findings have implications for the choice of evaluation metrics in image recon-
struction tasks and highlight the importance of aligning network architecture
with the specific objectives of the application.

2 Background

Autoencoders are neural networks designed to learn compressed representa-
tions of data through an encoder-decoder architecture. A standard autoen-
coder learns to reconstruct its input by first compressing it into a lower-
dimensional latent representation (the bottleneck) and then reconstructing
the original input from this compressed form. The encoder maps x → z
where z ∈ Rk with k ≪ d, and the decoder maps z → x̂, attempting to
recover the original input.

A Denoising Autoencoder (DAE) extends this framework by training the
network to reconstruct clean inputs from corrupted versions (Vincent 2008).
Rather than learning the trivial identity function f(x) = x, the network
must learn the underlying structure of the data to successfully remove noise.
This forces the model to capture meaningful patterns rather than memorizing
pixel-level details. To understand why this works, we turn to the manifold
hypothesis.

2.1 The Manifold Hypothesis

To understand what an autoencoder does, we have to recognize that while
each MNIST image is represented as a 784-dimensional vector, the actual
space of meaningful digit images occupies a much smaller subspace. Given a
picture of dimension (resolution) n×d with only grayscale values in [0, 255] ⊂
Z, there exist 256(n×d) possible combinations.

However, the set of images which we humans interpret as digits is a very small

2

subset of these 256(n×d) combinations and lies on a much lower-dimensional
manifold than the n × d-dimensional ambient space. This well-known hy-
pothesis goes under the name of the Manifold Hypothesis (Bengio, Courville,
and Vincent 2013). While this hypothesis cannot be easily visualized in
high-dimensional space, we can illustrate the concept by projecting to a two-
dimensional Euclidean space.

As shown in Figure 1, when we add Gaussian noise to a clean image, we effec-
tively knock the data point off this manifold M. Vincent 2008 characterizes
the denoising process as learning a vector field that maps these corrupted
points back onto the manifold, effectively capturing the local structure of the
data distribution. To the human eye, being off the manifold makes the image
resemble less of what we interpret as a digit.

x2

x1

0

Manifold (M)

xclean

x+ ϵ0

x+ ϵ5

Figure 1: (Our) Visualization of Gaussian noise in R2. The vector ϵ knocks
the data point off the manifold M into a region of the space where the pixel
combinations represent non-meaningful patterns.

3

2.2 From Intuition to Bayesian Estimation

To wrap our heads around what the Denoising Autoencoder is actually learn-
ing, we can move from the geometric ”manifold” view to a more probabilistic
one. When we minimize the MSE as defined in Equation (6), we are essen-
tially looking for the expected value of the clean data given the noisy version:

LDAE = Ex,x̃

[
∥x− fθ(x̃)∥2

]
(1)

From statistical estimation theory, the function fθ that best minimizes this
error is the conditional expectation (the mean of the posterior distribution)1:

fθ(x̃) = E[X | X̃ = x̃] (2)

where fθ still is defined as fθ = fdec ◦ fenc. This tells us that the bottleneck
in Figure 2 isn’t just a simple compression trick. It’s forcing the network to
figure out the most likely ”true” signal x hiding under all that noise.

For the Gaussian noise x̃ = x+ ϵ we have introduced, we can use the magic
formula known as Tweedie’s Formula to map back from x̃ 7→ x̂ by observing
how dense the crowd of the data is nearby (∇x̃ log p):

E[X | X̃ = x̃] = x̃+ σ2∇x̃ log pσ(x̃)

If we plug this back into our DAE logic, we see that:

fθ(x̃) ≈ x̃+ σ2∇x̃ log pσ(x̃) (3)

Which is the most important result to here make sense of the DAE: the
network is learning the score of the noisy data where the difference between
the input (x) and the output x̃ is a vector that pushes the noisy point back
toward the manifold M as we previously illustrated in Figure 1. In short,
our neural network is approximating the score of the data distribution.

1Derivation of this can be found at Bishop 2006 and using notation in line with this
paper can be found in Appendix A.

4

x x̃
Encoder
fenc(x̃)

z
Decoder
fdec(z)

x̂
+ ϵ

L(x, fθ(x̃))

Bottleneck

Figure 2: Overview of the architecture of a Denoising Autoencoder. The
composite function fθ = fdec ◦ fenc maps the corrupted input x̃ back to the
original signal x.

3 Data

Like the first project for this course we base our experiment on the Modified
National Institute of Standards and Technology (MNIST) dataset. MNIST
consists of 60,000 training (XT) and 10,000 test (Xtest) images of 28 × 28
pixels, where each pixel is a grayscale value xij ∈ [0, 255]. These values are
pre-processed by normalization so that xij ∈ [0, 1] ∀i, j.

After splitting the data into training and test, we will be left with the fol-
lowing two datasets to work with:

X10,000×784
T , X10,000×784

test

The reason for the training dataset (XT) being limited to 10,000 observations
is once again due to computational constraints. The biggest contrast to our
previous project in terms of data is that we will no longer be using any of the
labels ytrain,ytest ∈ {0, . . . , 9}10,000 as the methods we are now employing are
all unsupervised.2 See Figure 3 for a random draw of the ten digit classes.

2To be meticulous, we would argue for this method not being purely unsupervised, but
rather what we call self-supervised where the autoencoder learns from unlabeled data by
creating its own supervision. Since we have no labels y we do not have pairs of (xi,yi),
but rather pairs of (xi, x̂i).

5

Figure 3: Representative samples from the MNIST test set showing the ten
handwritten digit classes {0, . . . , 9}.

4 Method

4.1 Injecting Additive Gaussian Noise

Previously, we utilized SVMs to compare how various kernels perform when
Additive Gaussian Noise (AWGN) is applied to the test data. In that context,
the corrupted test matrix X̃test was formed by:

X̃test = Xtest + E (4)

where each element of the noise matrix is drawn from a normal distribution,
Eij ∼ N (0, σ2).

We now follow a similar logic for our Denoising Autoencoders, but we shift
our focus from the matrix level to the individual sample level. For each image
vector xi in our design matrix XT , we generate a corrupted version:

x̃i = xi + ϵi (5)

where ϵi ∈ Rd is a noise vector with components ϵij ∼ N (0, σ2). Our goal is
to evaluate how effectively various DAE architectures can restore these cor-
rupted vectors x̃i to their original state xi by minimizing the reconstruction
error across the entire design matrix. A graphic example of how the image
gradually gets more corrupted for higher noise levels can be seen in Figure
4.

In our previous paper (Byström and Stridh 2025b), we gradually applied
increasing levels of noise, as illustrated in Figure 4. However, for the current
DAE training, we have fixed the noise level at 50%. This specific intensity
was selected to ensure a sufficiently high degree of corruption, forcing the
network to move beyond simple local interpolation and instead capture the
global structure of the data manifold.

6

Figure 4: Progressive degradation of an MNIST digit sample under increasing
levels of additive Gaussian noise 0 ≤ σ ≤ 1.

4.2 Denoising Autoencoders

While a standard autoencoder is trained to reconstruct its input, a Denois-
ing Autoencoder (DAE) is trained to reconstruct the original, clean input
from a corrupted version of it. This architecture prevents the network from
simply learning an identity function; instead, it forces the model to learn the
underlying structure of the data manifold in order to ”undo” the noise and
recover the original signal.

As established in Section 2.2, the network learns to approximate the condi-
tional expectation E[X | X̃ = x̃], which minimizes the Mean Squared Error
(MSE) loss:

J (θ) =
1

N

N∑
i=1

∥x(i) − x̂(i)∥2 (6)

Since the MNIST dataset consists of 784-dimensional vectors, the input and
output layers are fixed by the data’s dimensionality. However, the internal
mapping is determined by the architect’s choice of network depth and bottle-
neck capacity. By varying the number of layers and the quantity of neurons
within each hidden layer, we control the network’s ability to model complex
manifolds while enforcing a strict information constraint.

The illustration in Figure 5 provides intuition for the term “bottleneck”, as
the network graphically converges to a constrained latent space (k) before
expanding to reconstruct the original 28× 28 pixel input.

4.2.1 Deciding Encoding-Decoding Architecture

To systematically evaluate these architectural trade-offs, we developed a grid
of nine unique models. These are categorized by their depth (ranging from

7

...

Input (d)

...

Enc. Layers

...

Bottleneck (k)

...

Dec. Layers

...

Output (d)

Figure 5: Neural network schematic of the Denoising Autoencoder. Cir-
cles represent neurons, and lines represent weight connections. The reduced
number of neurons in the central layer (k) forces the network to learn a com-
pressed manifold representation.

one to three hidden layers) and their latent capacity, which we determine
using PCA to capture specific levels of variance in the training data.

4.2.2 Determining the Size of the Bottleneck using PCA

To make an informed choice regarding the bottleneck dimensionality (k),
we first perform Principal Component Analysis (PCA), which serves as the
optimal linear baseline for data reconstruction.3 We define the sample co-
variance matrix (assuming zero-mean) as Σ = 1

n−1
X⊤X. The objective is to

find an orthogonal projection matrix V ∈ Rd×k that maximizes the captured
variance, expressed through the trace of the projected covariance:4

max
V

tr
(
V⊤ΣV

)
, subject to V⊤V = Ik (7)

The solution to Equation (7) is obtained via the eigenvalue decomposition
Σvi = λivi where the eigenvectors vi are arranged in descending order ac-
cording to their corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. To
determine the specific size of the information bottleneck, we analyze the

3See module PCA.py at Byström and Stridh 2025a for implementation.
4To see a more comprehensive derivation see Appendix B.

8

cumulative explained variance ratio (CEVR) as a function of k:

CEVR(k) =

∑k
i=1 λi∑d
j=1 λj

(8)

Using Equation (8), we select three specific bottleneck sizes that represent
70%, 80%, and 90% of the total variance. This results in a systematic exper-
imental grid consisting of 9 unique DAE models, categorized by their depth
(D) and latent capacity (k). The full experimental matrix is summarized in
Table 1.

Depth (D) Network Structure Bottleneck Sizes (k)

1 784 → k → 784 {26, 43, 86}
2 784 → 256 → k → 256 → 784 {26, 43, 86}
3 784 → 256 → 128 → k → 128 → 256 → 784 {26, 43, 86}

PCA Target Variance captured: 70%, 80%, and 90% respectively.

Table 1: DAE Architectures categorized by depth and latent capacity k.

4.2.3 Training Procedure

In the training process,5 we use 50 epochs with mini-batches of 128 images.
For every batch, the process follows a standard cycle:

1. Data Corruption: Clean input vectors x(i) ∈ [0, 1]784 are corrupted
with additive Gaussian noise following Equation (5):

x̃(i) = x(i) + ϵ(i), ϵ(i) ∼ N (0, 0.52I784)

and then clipped to ensure pixel values remain within the valid [0, 1]
range.

2. Forward Propagation: The corrupted input x̃(i) is transformed through
successive layers. For example, in a 3-layer encoder:

h1 = ReLU(W(1)x̃(i) + b(1)),

h2 = ReLU(W(2)h1 + b(2)),

z = ReLU(W(3)h2 + b(3))

5The code for the training process can be found at Byström and Stridh 2025a, module:
DAE.py.

9

where z ∈ Rk is the bottleneck representation. Each weight matrix
W(l) ∈ Rnout×nin with nout < nin compresses information, forcing the
network to retain only the most significant structural features. The
decoder mirrors this architecture to reconstruct x̂(i), with internal layers
using ReLU activation and a final sigmoid layer ensuring outputs stay
in [0, 1].

3. Loss Computation: The reconstruction error is measured using Mean
Squared Error across the batch as defined in Equation (6):

J (θ) =
1

N

N∑
i=1

∥x̂(i) − x(i)∥2

4. Gradient Computation: The gradients∇θJ are computed via back-
propagation by applying the chain rule:

∂J
∂W(l)

=
∂J
∂h(l)

· ∂h(l)

∂W(l)

5. Parameter Update: The Adam optimizer6 updates parameters with
learning rate η = 0.001:

θt+1 = θt − η
m̂t√
v̂t + ϵ

where m̂t and v̂t are bias-corrected running averages of gradients and
squared gradients, enabling adaptive step sizes for stable convergence.

All nine models in our grid search use identical training configurations to
ensure fair comparison across architectures.

6Adaptive Moment Estimation Optimizer.

10

5 Results & Discussion

We evaluated all nine DAE architectures on the test set corrupted with 50%
Gaussian noise. Table 2 presents the Mean Squared Error (MSE) for each
model configuration, which appears to reveal complex interactions between
network depth and bottleneck capacity that could challenge conventional
assumptions about architectural scaling.

Bottleneck Dimension (k)

Network Depth (D) 26 43 86

1 0.03755 0.02438 0.01816
2 0.02377 0.01917 0.01976
3 0.02318 0.02386 0.02576

Table 2: Mean Squared Error (MSE) Comparison Across Network Depth
and Bottleneck Dimensionality. Lower values indicate better numerical re-
construction quality.

The lowest reconstruction error was achieved by the shallowest architec-
ture with the largest bottleneck (D=1, k=86, MSE=0.01816). This result
is initially counterintuitive, as deeper networks are generally expected to
learn more sophisticated representations. However, three tentative patterns
emerge from the data that may help explain this finding.

First, within the single-layer architecture, increasing bottleneck capacity
seems to monotonically improve performance. The MSE decreases from
0.03755 (k=26) to 0.01816 (k=86), a reduction of approximately 52%. This
behavior is broadly consistent with theoretical expectations: when the net-
work has only one encoding-decoding transformation, a larger bottleneck
likely preserves more information from the input, enabling better reconstruc-
tion without the same risk of learning spurious patterns.

Second, the two-layer models exhibit a non-monotonic relationship with bot-
tleneck size. Performance improves from k=26 (MSE=0.02377) to k=43
(MSE=0.01917), but then degrades slightly at k=86 (MSE=0.01976). This
suggests that mid-capacity bottlenecks might provide a reasonable balance
for this depth, where the network has sufficient expressiveness to denoise
effectively without overfitting to noise patterns in the training data.

11

Third, and most strikingly, the three-layer architecture shows a consistent
degradation in MSE as bottleneck capacity increases. Moving from k=26
(MSE=0.02318) to k=86 (MSE=0.02576) represents an approximately 11%
increase in reconstruction error. This pattern runs counter to the naive ex-
pectation that more capacity should enable better performance. One possible
explanation is that the combination of increased depth and increased bot-
tleneck size makes it easier for the network to memorize fine-grained noise
patterns rather than learning the underlying clean manifold structure.

5.1 Depth-Capacity Interaction Effects

To better understand how depth and capacity interact, we can examine per-
formance differences across depth for each fixed bottleneck size. At k=26,
increasing depth from one to three layers reduces MSE by 38% (from 0.03755
to 0.02318), indicating that depth may provide substantial benefits when bot-
tleneck capacity is severely constrained. The additional nonlinear transfor-
mations could allow the network to extract more meaningful features despite
the limited information channel.

At k=43, the pattern shifts. The two-layer model (MSE=0.01917) outper-
forms both the one-layer (MSE=0.02438) and three-layer (MSE=0.02386)
configurations. This suggests an optimal intermediate complexity for this
bottleneck size, where sufficient depth appears to help the network learn
useful representations without introducing the optimization challenges or
overfitting tendencies associated with deeper architectures.

At k=86, we observe a complete reversal: the one-layer model achieves the
best performance (MSE=0.01816), followed by the two-layer (MSE=0.01976)
and three-layer (MSE=0.02576) models. The performance degradation with
increasing depth at this bottleneck size suggests that when sufficient capacity
exists in the bottleneck, additional depth can become detrimental rather than
beneficial.

Overall, these patterns indicate that depth and capacity are unlikely to be-
have as independent architectural parameters. The optimal configuration ap-
pears to depend on finding the right balance: constrained bottlenecks seem
to benefit from depth to compensate for limited capacity, while large bottle-
necks perform best with shallow architectures that may avoid overfitting.

12

5.2 The Perception-Distortion Trade-off

While Table 2 provides quantitative evidence that shallow networks with
large bottlenecks minimize reconstruction error, visual inspection of the out-
puts reveals a striking discrepancy between numerical performance and per-
ceptual quality. Figure 6 displays reconstructions of a representative digit
produced by each of the nine models.

Figure 6: Reconstructed outputs for a single test digit across all nine DAE
architectures.

The images in the bottom row (D=3) appear substantially sharper to human
observers than those in the top row (D=1), with crisper edges and more
clearly defined stroke boundaries. Yet paradoxically, these visually superior
reconstructions correspond to higher MSE values. This phenomenon, known
in the image processing literature as the perception-distortion trade-off (Blau
and Michaeli 2018) reveals a fundamental tension between optimizing for
human visual preference and optimizing for pixel-wise accuracy.

The source of this discrepancy becomes clear when we recall from Appendix A
that the function minimizing MSE is the conditional expectation E[X|X̃ =
x̃], which represents the posterior mean of all possible clean images that
could have generated the observed noisy input. The shallow, high-capacity
model approximates this posterior mean by producing a conservative blur

13

that averages over plausible reconstructions. By avoiding commitment to
any specific edge location, it minimizes the severe quadratic penalties that
MSE assigns to spatially displaced features.

In contrast, deeper models produce reconstructions that project more deci-
sively onto specific points on the data manifold. These networks generate
sharp edges by committing to particular stroke locations and intensities.
However, when these predicted edges are even slightly misaligned with the
true digit structure, the resulting pixel-wise errors accumulate rapidly un-
der the MSE metric. The network faces an unavoidable choice: produce a
diffuse, low-error blur, or generate a sharp, visually appealing image with
higher numerical error.

This counterintuitive relationship between visual quality and numerical ac-
curacy is illustrated in Figure 7, which presents pixel-wise residual heatmaps
for the two extreme architectures. The heatmaps reveal that the sharper,
more visually appealing reconstruction from the deep model (right panel)
actually exhibits substantially larger deviations from the original digit than
the blurred output from the shallow model (left panel).

Figure 7: Pixel-wise absolute residual heatmaps showing reconstruction er-
rors for the same test digit. Left panel shows errors from the shallow model
(D=1, k=86, MSE=0.01816), right panel shows errors from the deep model
(D=3, k=86, MSE=0.02576). Color intensity represents absolute error mag-
nitude, with white indicating maximum deviation.

The shallow architecture’s reconstruction (left panel) shows moderate errors
distributed relatively uniformly along the digit’s structure, with few pix-
els exhibiting extreme deviations. The deep model’s reconstruction (right
panel) reveals a strikingly different pattern: concentrated regions of high
error (bright orange and white pixels) appear along the stroke boundaries

14

and at key structural points. These hotspots indicate where the network has
committed to sharp edge locations that are spatially offset from the ground
truth.

The origin of these sharp but misaligned features may a form of learned
”hallucination”. During training, networks observe heavily corrupted inputs
where 50% Gaussian noise nearly obliterates digit structure, yet must recon-
struct clean targets with well-defined edges. Because fresh noise is sampled
at each training step, the model learns to recognize degraded patterns and
project them back onto the manifold of clean digits. Deeper architectures
develop stronger structural priors about where edges should be located and
how strokes should be shaped.

When confronted with ambiguous noisy inputs, these networks fill in missing
details by imposing learned expectations, committing decisively to specific
boundaries even when ground truth edges are positioned differently. The
shallow model, lacking capacity for such detailed priors, hedges by producing
a conservative blur that averages over plausible interpretations, resulting in
moderate but diffuse errors rather than concentrated deviations.

This confirms the perception-distortion trade-off: reconstructions appearing
sharpest to human observers are often most dissimilar to the original by
pixel-wise comparison. Models minimizing MSE achieve low error through
controlled blurring rather than accurate fine-scale recovery. For applications
prioritizing perceptual quality over point-wise accuracy, evaluation metrics
beyond MSE may be necessary.

6 Conclusion

This study systematically investigated how network depth and bottleneck
capacity influence denoising performance in autoencoders trained on MNIST
digits corrupted with 50% Gaussian noise. By testing nine architectures
varying depth and bottleneck dimensions, we observed several patterns in
the relationship between architecture and reconstruction quality.

Our primary finding is that the simplest architecture (D=1, k=86) achieved
the lowest MSE (0.01816), outperforming all deeper variants. This result
likely stems from how different architectures approximate the conditional
expectation E[X|X̃ = x̃]. Shallow networks produce conservative, smoothed

15

reconstructions that minimize pixel-wise deviations, while deeper networks
generate sharp, perceptually appealing images at the cost of higher numerical
error when predicted edges are spatially misaligned.

The interaction between depth and capacity revealed three distinct patterns.
At constrained bottlenecks (k=26), depth improved performance by 38%. At
intermediate sizes (k=43), two-layer architectures achieved optimal balance.
At large bottlenecks (k=86), performance degraded with increasing depth,
suggesting overfitting to noise patterns rather than learning the underlying
clean manifold.

Additionally, our residual analysis revealed a so-called perception-distortion
trade-off in these models. The models producing the sharpest outputs sys-
tematically incurred higher MSE than those generating blurred but numeri-
cally accurate reconstructions. MSE penalizes sharp features that are slightly
misaligned while rewarding diffuse predictions. This discrepancy suggests
that for applications prioritizing perceptual quality, evaluation metrics be-
yond MSE may better align with human judgments.

These findings have practical implications for autoencoder design: shallow
architectures with generous bottleneck capacity provide optimal numerical
accuracy, while deeper networks may be preferable for perceptual quality
despite higher MSE.

Future work could extend this analysis to Convolutional Neural Networks
(CNNs) and non-Gaussian noise distributions, particularly on more com-
plex, photorealistic datasets; such studies would determine if the perception-
distortion trade-off is exacerbated when the underlying data manifold is
harder to approximate than in the relatively simple MNIST domain

16

References

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013). “Representa-
tion Learning: A Review and New Perspectives”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 35.8, pp. 1798–1828. doi:
10.1109/TPAMI.2013.50.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning.
Springer. isbn: 978-0387310732. url: https://www.microsoft.com/en-
us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-

and-Machine-Learning-2006.pdf.
Blau, Yochai and Tomer Michaeli (2018). “The perception-distortion trade-
off”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6228–6237. doi: 10.1109/CVPR.2018.
00652.

Byström, Alexander Eriksson and Jack Andersson Stridh (2025a). PCA Im-
plementation for Denoising Autoencoder Bottleneck Selection. https://
github.com/Alexerby/stan52-project2-code.

– (Month of Submission 2025b). “The Robustness of SVM Kernels to Noise:
A Comparative Analysis on MNIST”. Unpublished technical report, Project
I for [STAN52].

Vincent, Pascal (2008). Extracting and Composing Robust Features with De-
noising Autoencoders. Tech. rep. 1358. Université de Montréal. url: https:
//www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-

autoencoders.pdf.

17

https://doi.org/10.1109/TPAMI.2013.50
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://doi.org/10.1109/CVPR.2018.00652
https://doi.org/10.1109/CVPR.2018.00652
https://github.com/Alexerby/stan52-project2-code
https://github.com/Alexerby/stan52-project2-code
https://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
https://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf
https://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf

A Appendix: Derivation of the Optimal MSE

Estimator

To show why the Denoising Autoencoder targets the conditional mean, we
look at the expected squared loss for our reconstruction function fθ(x̃) rela-
tive to the clean target x. Following the logic from Bishop 2006, the average
loss is:

E[L] =
∫∫

∥fθ(x̃)− x∥2p(x, x̃) dxdx̃

Our goal is to find the specific function fθ(x̃) that minimizes this integral.
We can rewrite the joint distribution using the product rule as p(x, x̃) =
p(x|x̃)p(x̃). This allows us to express the loss as:

E[L] =
∫

p(x̃)

[∫
∥fθ(x̃)− x∥2p(x|x̃) dx

]
dx̃

Since p(x̃) is non-negative, minimizing the total loss is equivalent to mini-
mizing the term inside the square brackets for every possible value of x̃. If
we take the derivative of that inner term with respect to fθ(x̃) and set it to
zero, we get:

∂

∂fθ(x̃)

∫
∥fθ(x̃)− x∥2p(x|x̃) dx = 2

∫
(fθ(x̃)− x)p(x|x̃) dx = 0

By expanding the integral, we can solve for fθ(x̃):∫
fθ(x̃)p(x|x̃) dx =

∫
xp(x|x̃) dx

Since fθ(x̃) is a constant with respect to the integral over x, and knowing
that the conditional distribution

∫
p(x|x̃) dx must sum to 1, the equation*

simplifies to:

fθ(x̃) =

∫
xp(x|x̃) dx = E[X|X̃ = x̃]

Which confirms that the optimal reconstruction for a noisy input is the mean
of all possible clean images that could have produced it. In the context of
our manifold hypothesis, the network is learning to find the ”center of mass”
of data points on the manifold M given the noisy observation x̃.

18

B Appendix: Derivation of Principal Com-

ponent Analysis

In Principal Component Analysis (PCA), we are seeking a linear projection
of our data that captures as much of the original variance as possible. To
derive this, let X ∈ Rn×d be our design matrix, and we assume that the data
has been pre-centered so that the sample mean is zero. We define our sample
covariance matrix as Σ = 1

n−1
X⊤X.

B.1 Our Objective: Maximizing Variance

We want to find a direction, defined by a vector v, such that when we project
our data onto it, the resulting variance is maximized. The variance of this
projection can be expressed as:

Var(Xv) = v⊤Σv (9)

B.2 Why we need a Constraint

If we were to naively attempt to maximize the expression v⊤Σv without any
constraint, the problem would be poorly specified. Because the expression
is a quadratic form, we could simply increase the magnitude of v toward
infinity and always find a ”better” (larger) solution. To make the problem
meaningful and find a unique direction, we must restrict v to be a unit vector,
such that:

∥v∥2 = v⊤v = 1 (10)

B.3 Solving the Optimization Problem

To solve this constrained maximization, we formulate a Lagrangian L:

L(v, λ) = v⊤Σv − λ(v⊤v − 1) (11)

where λ is our Lagrange multiplier. If we now take the gradient with respect
to v and set it equal to zero, we get:

∇vL = 2Σv − 2λv = 0 (12)

19

By rearranging this, we arrive at the following result:

Σv = λv (13)

This tells us that the directions we are looking for are actually the eigenvec-
tors of our covariance matrix Σ. Furthermore, since the variance along the
projection is v⊤Σv = λ, we know that the eigenvalues quantify exactly how
much variation is captured by each component. This is why we can use the
cumulative sum of these eigenvalues to decide our bottleneck size k.

20

	Introduction
	Background
	The Manifold Hypothesis
	From Intuition to Bayesian Estimation

	Data
	Method
	Injecting Additive Gaussian Noise
	Denoising Autoencoders
	Deciding Encoding-Decoding Architecture
	Determining the Size of the Bottleneck using PCA
	Training Procedure

	Results & Discussion
	Depth-Capacity Interaction Effects
	The Perception-Distortion Trade-off

	Conclusion
	Appendix: Derivation of the Optimal MSE Estimator
	Appendix: Derivation of Principal Component Analysis
	Our Objective: Maximizing Variance
	Why we need a Constraint
	Solving the Optimization Problem

